

Fourth Semester B.E. Degree Examination, June/July 08 Power Electronics

Time: 3 hrs.

Max. Marks:100

Note: Answer any FIVE questions choosing at least TWO questions from each part.

Part A

- a. List the different types of power electronic circuits and converter circuits and their applications.

 (06 Marks)
 - Plot the input and output characteristics of any four power semiconductor devices.

(08 Marks)

- What are the advantages of static power converters? Mention the peripheral effects of such static power converters. (06 Marks)
- a. Explain how antisaturation base control improves the switching performance of a BJT. (96 Marks)
 - b. With the help of switching waveforms explain the switching times of a power MOSFET.
 (07 Marks)
 - c. A transistor switch of figure Q2 (c) has β in the range of 8 to 40. Calculate i) The value of R_B that results in saturation with an overdrive factor of 5. ii) The forced β_f and iii) The power loss in the BJT.
 (07 Marks)

- a. Explain the principle of operation of an SCR using two transistor model. (96 Marks)
 - b. What is the need for protection of thyristors? Explain how thyristors are protected against high $\frac{di}{dt}$ and high $\frac{dv}{dt}$. (07 Marks)
 - c. Sketch the static V-I characteristics of an SCR and explain i) Latching current ii) Holding current and iii) Break over voltage. (07 Marks)
- 4 a. Discuss the process of thyristor commutation and differentiate between i) Natural and forced commutation. ii) Self and impulse commutation. (12 Marks)
 - b. The resonant pulse commutation circuit has a capacitance C = 30 μF and L = 4 μH. The initial capacitor voltage is V = 200V. Determine the circuit turn off time for the load current I = 250A.
 (08 Marks)

Part B

5 a. With a circuit diagram and waveforms of gating pulses and output voltage, explain the operation of 1-φ ON-OFF type ac voltage controller. Derive an expression for V_{0(rms)}.

(10 Marks)

- With necessary waveforms explain the operation of 1-φ full wave controller with inductive load. Derive expressions for rms output voltage and rms output current.(10 Marks)
- a. Explain the working of 1-φ semi converter with the help of waveforms for resistive load and inductive loads.

 (10 Marks)
 - b. With circuit diagram, explain the operation of a 3 φ full converter for constant load current. If the input to this circuit is 3 φ, 50 Hz, ac supply, determine the firing angle, α, for the SCRS to obtain an output average dc voltage of 50% of the maximum. If this output voltage is 270 volts, calculate ac supply line to line rms voltage. (10 Marks)
- a. Explain in detail how choppers are classified.

(10 Marks)

- b. A chopper is feeding an R-L load as shown in the figure Q7 (b), $V_s = 220V$, $R=5\Omega$, L=7.5 mH, f=1 kHz, $\delta=0.5$ and E=0 volts. Calculate
 - i) Minimum instantaneous load current, Imin
 - ii) Peek instantaneous load current Imax.
 - iii) Maximum peek to peek load ripple current.
 - iv) Average value of load current.
 - v) rms load current I o(rms).
 - vi) Effective input resistance Ri.
 - vii) rms chopper current, l_{T(rms)}-

(10 Marks)

Fig. Q7 (b)

- 8 a. With necessary waveforms explain the operation of a single phase half bridge inverter.
 (10 Marks)
 - b. Draw the circuit diagram of a three phase bridge inverter with Y connected resistive load. Sketch the gating signals and line to line output voltages for 180° conduction operation. (10 Marks)